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Summary
Deep learning has gained a significant popularity in recent years thanks to its
tremendous success across a wide range of relevant fields of applications, includ-
ing medical image analysis domain in particular. Although convolutional neural
networks (CNNs) based medical applications have been providing powerful
solutions and revolutionizing medicine, efficiently training of CNNs models is
a tedious and challenging task. It is a computationally intensive process taking
long time and rare system resources, which represents a significant hindrance
to scientific research progress. In order to address this challenge, we propose in
this article, R2D2, a scalable intuitive deep learning toolkit for medical imag-
ing semantic segmentation. To the best of our knowledge, the present work is
the first that aims to tackle this issue by offering a novel distributed versions
of two well-known and widely used CNN segmentation architectures [ie, fully
convolutional network (FCN) and U-Net]. We introduce the design and the core
building blocks of R2D2. We further present and analyze its experimental evalu-
ation results on two different concrete medical imaging segmentation use cases.
R2D2 achieves up to 17.5× and 10.4× speedup than single-node based train-
ing of U-Net and FCN, respectively, with a negligible, though still unexpected
segmentation accuracy loss. R2D2 offers not only an empirical evidence and
investigates in-depth the latest published works but also it facilitates and signifi-
cantly reduces the effort required by researchers to quickly prototype and easily
discover cutting-edge CNN configurations and architectures.
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1 INTRODUCTION

Semantic segmentation of medical imaging consists in detecting and contouring boundaries of regions of interest in
medical images such as lesions, anatomical structures, or any other meaningful morphological structures.1 It plays a
fundamental role in computer aided diagnosis,2,3 clinical studies, and medical treatment planning.4 However, manual
medical image segmentation is not only a tedious, extensive and time consuming task, but also it has to be performed
by medical experts. Recent advances in deep neural networks5 (DNNs) and particularly convolutional neural networks5

(CNNs) come to address this issue. In fact, CNN-based applications have been shown to be powerful tools to successfully
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tackle most common medical images challenges4,6 and in particular medical semantic segmentation tasks.7,8 However,
building efficient CNN models requires an effective and tedious training process. In order to do so, multiple CNN archi-
tectures have to be investigated. Concurrently, an hyperparameters optimization process9 has to be performed for every
CNN candidate architecture. The hyperparameters optimization task aims to select the optimal set of hyperparameters in
order to optimize the CNN performance. It involves performing various hyperparameters optimization strategies10 which
generally require executing multiple training runs. Hence, training CNN models is computationally intensive and time
consuming process.11 For instance, training DeepMedic12 brain tumor segmentation CNN architecture with a particular
set of hyperparameters requires approximately a day using a single NVIDIA GTX Titan X GPU. Therefore, decreasing the
training duration of DNNs is crucial to accelerate hyperparameters optimization process. Moreover, it enables researchers
to not only build effective CNNs, but also prototype and explore not yet investigated CNN configurations and architectures
through an iterative and adaptive experimentation approach.

In order to address this challenge, we propose and evaluate R2D2 (rapid and robust digital diagnostic) a research-
dedicated scalable deep learning toolkit (DLTK) for medical imaging segmentation. Our proposed toolkit introduces
(i) a couple of an innovative ready-to-use distributed versions of two popular CNN segmentation architectures [fully
convolutional network (FCN)13 and U-Net14 alongside with (ii) a high-level end-to-end deep learning medical imag-
ing processing pipeline. The latter aims to reduce the learning curve and overcome talent-intensive deep learning
technology adoption barriers for nonspecialists. For security, accessibility and usability reasons, R2D2 can be driven
through a software as a service user-friendly web interface in addition to a command line interface (CLI) for more
expert users. Furthermore, R2D2 integrates a couple of real-time visualization components in order to track both (i) sys-
tem resources and (ii) CNN training metrics evolution during the distributed training process. They offer an extensive
overview for a better understanding and easier debugging of the CNN distributed training task progress. We achieve
up to 97% and 58% scaling efficiency for U-Net and FCN CNNs, respectively, when moving from 1 to 18 Nvidia GTX
1080 Ti GPUs without significant, yet still mysterious segmentation accuracy degradation. Furthermore, our work con-
stitutes a deep empirical investigation for the latest published articles15,16 and confirms state-of-the-art results of related
works.17-19

In addition, in order to prove that R2D2 generalizes for a wider variety of datasets and tasks, we assess our proposed
scalable CNN architectures on two practical medical imaging segmentation use cases. The first one is a brain tumor
segmentation challenge, and the second use case is a cardiac left atrium segmentation task. This extensive evaluation
provides an in-depth assessments and comparison of the performances of two popular CNN architectures on a couple of
challenging case studies.

The remainder of the article is structured as follows: In Section 2, we provide a brief overview of background infor-
mation on distributed training of DNNs and explore some related work. In Section 3, we present R2D2 and its design,
building blocks and architecture. In Section 4, we evaluate our proposed solution, based on two different concrete medical
imaging segmentation case studies. We finally conclude and give insights about future research directions in Section 5.

2 BACKGROUND AND RELATED WORK

The following section will give a brief overview on CNNs concepts and architectures we deal with in our proposed toolkit.
A special interest will be shown also to the most common CNN distributed training approaches and particularly to the
muti-GPUs data parallelism CNNs strategy. We expose, at the end, some related work and tools.

2.1 CNNs for semantic segmentation

Throughout this article, the term “CNN architecture” refers to the global structure of the neural network (ie, the number,
order, size, and so on, of each network’s layer). In addition, the term “CNN model” denotes the output of the training
process of a specific CNN architecture on a particular training dataset and hyperparameters.

CNNs are inspired by nature, in particular, visual cortex structure.20,21 They are a powerful multilayer neural networks
designed to deal with images. Unlike fully connected networks where every neuron is connected to all its predecessors,22

each neuron in CNNs is connected to a local subdivision of the neurons in the underlying layer.23-25 CNNs are easier to
train because they have much less parameters to tweak than fully connected networks.26 Another advantage of CNNs is
their ability to introduce some degree of shift, scale and distortion invariance22,27 to the learning process. CNNs are having
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F I G U R E 1 Fully convolutional network for semantic
segmentation architecture1

a great success in various medical imaging use cases28-30 including the semantic segmentation task. The latter consists in
a pixel level classification of images (ie, by assigning a label to every pixel in every image, we can split input images into
semantically meaningful regions1).

2.1.1 Fully convolutional network

The FCN13 is the first popular1CNN semantic segmentation architecture we deal with in R2D2. As can be seen in Figure 1,
it is a CNN where the last typical fully connected layer is replaced by an additional convolutional layer which makes the
network able to deal with arbitrary-sized input images.1 Given that the input image dimensions get smaller when we
get deeper in the network due to convolution operations. The FCN uses the transposed convolution31 technique during
the upsampling step so that the output dimensions match the original input image dimensions. However, this technique
causes a loss of spatial information. That is why the FCN uses skip connections31 to reduce the information loss during
convolution operations.1,32

2.1.2 U-Net

Another widely used2CNN architecture for semantic segmentation tasks is the U-Net architecture.14 It is the second CNN
architecture we introduce its distributed version in our proposed solution. In Figure 2, each blue box denotes a multi-
channel feature map. The number of channels is represented on top of the box. White boxes denote copied feature map
and the arrows illustrate the diverse operations.14 U-Net is an encode-decoder style architecture. The encoder consists
of a sequence of convolution, max pooling and ReLU activation layers which reduce the spatial dimensions of the input
volume. On the other hand, the decoder gradually restores the initial input spatial dimensions through transposed con-
volution operation.31 The U-Net architecture might be used in various tasks but it is initially designed and mainly used
for biomedical image segmentation.14

2.2 Distributed training of DNNs parallelism approaches

Distributed training approaches of DNNs are mainly divided into three different categories: model, data, and hybrid
parallelism techniques.33

1FCN had accumulated more than 9724 citations by the end of June 2019.
26228 citations for U-Net by the end of June 2019.
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F I G U R E 2 U-Net network
architecture14 [Color figure can be
viewed at wileyonlinelibrary.com]

2.2.1 Model parallelism

Some DNNs models have a considerable size, and hence, they are not adapted to the memory size of an individual training
device (one GPU, for instance).34 These models require to be partitioned across all the nodes in the distributed system
and every node trains a different part of the model on the whole training dataset. In Figure 3, the blue rectangle stands
for a training node, the light blue circle represents a subset of a DNN model (eg, a DNN layer) and the arrow represents a
connection between two successive subsets of the same model. As can be seen, every node performs the training of only
a specific subset of the model. This parallelization schema is known as model parallelism technique.35-37

2.2.2 Data parallelism

The second distributed training strategy of DNNs is called data parallelism approach. As shown in Figure 4, all nodes
in the distributed system have the same complete copy of the model. However, the training is done independently on
each node using a different subset of the whole training dataset, at the end of every training iteration, the results of
computations from all the nodes are combined using different synchronization approaches.35-37

F I G U R E 3 Model parallelism [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 4 Data parallelism [Color figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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2.2.3 Hybrid parallelism

It is possible to combine both previously mentioned distributed training approaches (ie, model parallelism for every
node and data parallelism across nodes37). However, data parallelism has become the most popular distributed training
approach for the following reasons :

• The practical simplicity to introduce data parallelism37 compared with the model parallelism strategy when the model
size fits in the training device’s memory.

• The recent success achieved by the data parallelism method15,16 to considerably increase the minibatch size without
significant segmentation accuracy loss.

2.2.4 Other parallelism approaches

In recent years, the largest amount of research done to scale up the training of DNNs evolves around methods
that aim to parallelize the computation of the gradient during the gradient descent27 optimization method. Hence,
distributed training of DNNs approaches can be also classified depending on the model consistency synchroniza-
tion strategies37 (eg, synchronous,38 stale-synchronous,39 and asynchronous36 techniques) and the parameter distri-
bution and communication centralization methods37 [eg, parameter server (PS),40 Shared PS,41 and decentralized
strategies42.

2.3 Related work

A special effort has been made since a long time to develop medical imaging processing tools.43 They can be classified
according to the extent, scope, and nature of their application areas. Some generic medical imaging solutions have been
around for a while (eg, MITK,44 VTK, and ITK45). They propose a comprehensive set of common medical imaging tasks
(eg, registration,46 segmentation, visualization, and reconstruction47). Other generic medical imaging tools yet pathology
specialized solutions have been introduced. For instance, FMRIB Software Library48 and Freesurfer software suite48 are
two popular medical image analysis tools specialized in neuroimaging. Finally, a suite of task specific solutions have been
proposed (eg, NiftySeg49 for segmentation, NiftySim50 for simulation, and Camino51 for Diffusion).

The previously mentioned medical imaging tools are neither DNN-based solutions, nor distributed applications. How-
ever, the recent deep learning breakthroughs led to the emergence of a new set of DNN-based medical image analysis tools.
For instance, NiflyNet52 is an open source deep-learning-based platform of medical imaging which is built on top of Ten-
sorFlow library. It provides a modular medical imaging processing pipeline alongside with a set of established pretrained
domain specific models. The DLTK53 is another open source TensorFlow-based medical imaging toolkit implementing
baseline versions classic network architectures. DeepInfer54 is an additional DLTK for image-guided therapy with a focus
on the deployment and the reuse of pretrained models.

Other related medical image analysis tools exist.55-57 Furthermore, although medical imaging DNN-based solutions
built on top of Tensorflow (eg, NiftyNet and DLTK) natively support the standard built-in Tensorflow parallelization
approach, they don’t come up with an all set, ready-to-use distributed versions of CNN architectures (ie, they require
a large amount of talent-extensive code modification58). Moreover, even if some of them present some similarities with
R2D2 (ie, NiftyNet deep learning medical imaging pipeline, DeepInfer, and DLTK proposed pretrained models), to the
best of our knowledge, no existing medical imaging solution offers all the features of R2D2, in particular :

1. The novel and ready-to-use distributed versions of the immensely popular FCN and U-Net CNN segmentation
architectures which we denominate Dist-FCN and Dist-U-Net, respectively.

2. The integrated monitoring platform for system resources supervision and visualization which offers a deeper insights
on, not yet investigated, system resources evolution patterns during the distributed training of CNNs. The real-time
monitoring platform also allows the user to early stop the CNNs training in the case of the divergence of the latter’s
training process. Thus, the early stopping in such situations will avoid the waste of resources and energy.

3. The high-level end-to-end deep learning medical imaging segmentation processing pipeline.
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The above-mentioned novel features integrated in our proposed toolkit are the main contributions of our work. That
is why they make R2D2 stand out from the rest of existing solutions in medical imaging deep-learning-based solutions.

3 R2D2 SYSTEM DESCRIPTION

This section introduces R2D2 our proposed scalable toolkit. First, we provide a global overview on R2D2 main scope,
features, design and system architecture, before diving into the details of its building blocks and core components.

3.1 Scope and architecture

R2D2 toolkit brings the power of distributed systems to use in medical imaging deep-learning-based applications, while
considering software engineering best practices. Figure 5 depicts the overall scope into which R2D2 operates.

Our proposed toolkit follows an extensible and modular design. As shown in Figure 6 which provides a high-level
overview on our distributed toolkit architecture, R2D2 offers an end-to-end support for a typical deep learning workflow in
medical imaging by introducing a high-level of abstraction for common components in a regular medical CNNs processing
pipeline.

The end-user might interact with the toolkit through different front-ends. He can either use an intuitive web-based
graphical user interface or a CLI. The toolkit user has a set of tools at his disposal which are as follows.

• The R2D2 Engine is the entry point for the R2D2 toolkit. It is the main system controller operating as a key interface
between the toolkit user and the available modules.

F I G U R E 5 R2D2 scope [Color figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 6 System architecture

http://wileyonlinelibrary.com
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• The ImgMed Library is a high-level medical imaging preprocessing library which offers a typical medical imaging
preprocessing operations.

• The Dist-Training Module is the core component of R2D2. It contains Dist-FCN and Dist-U-Net, a novel
distributed versions of widely adopted FCN and U-Net CNN segmentation architectures, respectively.

• The SegEval Library is an evaluation library which proposes implementations for a collection of common empirical
evaluation methods59 for semantic segmentation.

R2D2 includes also a set of pretrained, pathology specific CNN models for renal cortex, liver and brain lesion segmen-
tations. These pretrained models constitute a model zoo and they might be used to leverage transfer learning approach
while building new CNN models. The transfer learning strategy60 consists in reusing an already pretrained models as a
starting point for the training process of new CNN models in order to, potentially, accelerate model training while improv-
ing its performance. Furthermore, it is also possible for the R2D2 user to publish his newly trained models and enrich the
pretrained models collection. Finally, the user can use a web-based graphical interface for a real-time monitoring of the
system resources during the distributed training phase. Concurrently, the toolkit user can also visualize the CNN training
metrics evolution.

3.2 Core building blocks

3.2.1 ImgMed: Medical imaging preprocessing library

We built ImgMed which is a new library dedicated to medical imaging preprocessing workflow. In fact, the data prepro-
cessing phase is an important and key step in machine learning development pipeline. It is a challenging task because it
not only conditions the effectiveness of the developed model, but data preprocessing is also a time consuming task as it
represents up to 70% of the whole project time.61 The ImgMed library intent to tackle this challenge by proposing an all
set high-level medical imaging preprocessing solution.

ImgMed includes, but is not limited to, the following typical medical imaging preprocessing operations:

• Image format conversion (eg, from JPG to PNG)
• Image reshaping (eg, from 3D to 2D)
• Image resizing
• Data augmentation

We have chosen Python as a programming language for ImgMed reference implementation for its simplicity. The
ImgMed library is built upon matplotlib,62 OpenCV ,63 and SciPy64 libraries.

An example of an end-to-end medical imaging preprocessing workflow implemented using ImgMedhigh-level library
is shown in Listing 1. We consider a set of N Niftti files as a raw input dataset. The first step is to reshape the 4D input files
to an RJB JPG images. Next, another image reshaping procedure is performed, followed by a format conversion operation

L i s t i n g 1 Typical medical imaging preprocessing workflow
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from JPG to PNG. The final step of the preprocessing workflow example involves resizing the PNG images to 350× 350
pixels (note that the sources and destinations file paths can be tuned according to the user needs).

As it can be noticed, the example in Listing 1 not only shows the easiness with which it is possible to implement a
complete and classic preprocessing pipeline with only a few lines of code, but it also highlights the considerable impact
of ImgMed in reducing duplication of effort during the preprocessing step of medical imaging pipeline.

3.2.2 Dist-Training module

The Dist-Training module is the core component of R2D2 toolkit. It provides a set of scalable CNN segmentation
architectures (Dist-FCN and Dist-U-Net). Yet, above all, in order to introduce parallelism to FCN and U-Net CNN
architectures, a number of choices have to be made among the various distributed training strategies already introduced
in Section 3. Our selection criteria of the considered parallelism method are threefold: (i) The distributed method model
accuracy preservation, (ii) while taking into account its network bandwidth optimality (iii) and without forgetting to
consider the burden of its practical implementation.

In the first place, we decided to adopt the data parallelism approach for the following reasons :

• In model parallelism, the workload of the partitioning task of a model across multiple nodes is left to the
programmer,37,65,66 that makes the effective implementation of model parallelism method a challenging task unlike the
data parallelism one. For this reason, the model parallelism schema is mainly considered as a final alternative approach
when a model size does not fit in a single-node’s memory.36,66

• Since the model parallelism approach involves partitioning the model across several training agents, and given that
the DNN architectures naturally generate a layer interdependencies,37 the synchronization of computations during
the training phase in model parallelism strategy creates a communication overhead which increases the training
runtime.36,37

• Considering that the level of scalability of the data parallelism method is naturally determined by the minibatch hyper-
parameter size,37 and since recent published works15,67 have succeeded to considerably increase the minibatch size
without significant segmentation accuracy loss, data parallelism has become the most preferred distributed training
approach.

Then, we chose to scale up the training of FCN and U-Net architectures using a synchronous parallelism approach.
Our selection criterion for the latter chosen strategy was the trade-off between the CNN model accuracy and the training
speedup. In fact, synchronous methods achieve better results regarding the accuracy of the CNN models compared with
the asynchronous approaches,37,66 particularly, with a short synchronization period.68

The main steps in the selected synchronous distributed data parallelism strategy are as follows:58 (i) compute the
model updates (gradients of the loss function) using a minibatch on each training agent (ii) compute the average of
gradients of all training agents (iii) update the model. Hence, we have to select the parameters updates communication
and propagation schema. Even if both centralized and decentralized parameters updates communication approaches have
advantages and drawbacks, we decided to go for a decentralized Ring-Allreduce58,69 algorithm for the following reasons.

• Since the network bandwidth is classified among the rarest resources in datacenters,70 and even if the centralized PS is
one of the popular approaches in distributed machine learning with better fault tolerance, it suffers from a bandwidth
bottleneck especially with large scale systems.37,70

• Although the PS congestion issue might be alleviated through some alternative PS infrastructures (eg, shared PS),
selecting the appropriate ratio of PSs in these alternative configuration is still a challenging task.58

• The Ring-Allreduce algorithm is built on a HPC approach proposed in 2009 by Patarasuk and Yuan.71 It is a highly
scalable and bandwidth optimal approach as it remarkably reduces the network communications overhead,58 which
perfectly corresponds to our aforementioned parallelism schema selection criterion.

In summary, we decided to adopt a decentralized synchronous Ring-Allreduce data parallelism strategy in order
to bring Dist-FCN and Dist-U-Net into practice.
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F I G U R E 7 Decentralized synchronous ring
all-reduce parallelism schema adopted in the R2D2
Dist-Training module69,72

As shown in Figure 7, we distributed the training of FCN and U-Net CNNs as follows: First and foremost, we intro-
duced data parallelism by deploying the same CNN segmentation architecture on each training node (ie, either FCN or
U-Net). After that, we sat up the Ring All-reduce algorithm. The latter steps are as follows: Initially, each worker node
reads its own subset of the current minibatch. After that, it computes its gradients, and communicates it to its nearby suc-
cessor on the ring and get in turn the calculated gradients from its predecessor neighbor. In a ring that counts N workers,
it takes N−1 communications of gradients between workers, so that every worker receives the required gradients values
to compute the updated model. In addition, we ensured the system fault tolerance through a checkpoint/restart schema.
Last but not least, considering that we scaled up the training of FCN and U-Nets CNNs using a data parallelism schema,
we applied the learning rate linear scaling rule which consists in adjusting the learning rate as a function of the minibatch
size15 in order to distribute the training of our CNNs without considerable segmentation accuracy loss.

3.2.3 SegEval: Segmentation evaluation library

Once we have finished the distributed training of our CNN architecture, the next step in a typical processing pipeline
is to evaluate the trained model. To this end, R2D2 provides an evaluation library which implements a set of common
evaluation metrics for both binary and multilabel semantic segmentation tasks.

We denote ncl 𝜀 N the number of classes. In addition, we denote nij the number of pixels of class i predicted to belong
to class j and ti =

∑
jnij the total number of pixels of class i. The SegEval library offers the following widely adopted

evaluation metrics.13

• The Dice score reports the percentage of overlap between the predicted segmentations and the ground truth masks:
Dice = 1

ncl

∑
i

2nii
2nii+nij+nji

• The pixel accuracy (PA) is a measure of the percentage of the image pixels that were correctly classified : PA =
∑

inii∑
iti

• The mean accuracy (MA) is the mean of the PA across the ncl classes: MA =
(

1
ncl

)∑
i

nii
ti

• The Mean Intersection Over Union (mean.IoU) is a measure of the area of overlap divided by the area of union
between both predicted and groundtruth images : (mean.IoU) =

(
1

ncl

)∑
i

nii
ti+

∑
jnji−nii

and the frequency weighted IoU

(f.w.IoU):
(∑

ktk
)−1∑

i
tinii

ti+
∑

jnji−nii
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4 EVALUATION

In this section, we conduct a comprehensive evaluation of the Dist-Trainingmodule which is the core building block
of our proposed R2D2 toolkit. We first introduce our experimental environments. Afterward, we present the experimental
evaluation results of the distributed CNN architectures (Dist-FCN and Dist-U-Net) on a brain tumor segmenta-
tion use case. Finally, in order to validate the Dist-Training module transferability to other segmentation use cases,
we assess the module on a second medical imaging segmentation task, which involves locating the heart’s left atrium
structure.

4.1 Experimental environments

4.1.1 Hardware

We accomplished the distributed training experiments on the Nancy Grid’500073 testbed site. The experiments were con-
ducted on Grele GPU cluster which contains Dell PowerEdge R730 physical machines where each node is equipped with 2
Nvidia GeForce GTX 1080 Ti GPUs. We use the Grid’5000 network file system (NFS) to share the training dataset between
all training agents. The nodes are interconnected using InfiniBand74 high-speed interconnect.

4.1.2 Software

The FCN and U-Net architectures were mutually built on top of google’s Tensor-Flow library. Furthermore, the U-Net
CNN was also implemented using the high-level keras75 API to ensure an easier architecture prototyping task. After
that, in order to practically implement the Dist-FCN and Dist-U-Net by introducing the considered synchronous
Ring-Allreduce data parallelism schema, we take advantage of the Horovod58 based implementation of the Ring-Allreduce
algorithm. The latter is built concurrently on both, Open MPI76 and NCCL 2.03communication libraries. Moreover, during
the experimental evaluation, we simultaneously make use of the proposed R2D2 module incorporating TICK Stack mon-
itoring platform 4in order to collect system metrics data during the distributed training. The collected datasets are stored
in the time series databaseInfluxDB. In addition, since the Dist-Training module is partially built using the Tensor-
Flow library, we leverage the natively integrated TensorBoard visualization component, in order to enable R2D2 users
to have an extensive overview on the training progress and hence facilitating the debugging of the CNNs training step.
Finally, to consider software reusability, and ensure research reproducibility, the Dist-Training module and its run-
time components were containerized into a debian 9 stretch-based docker image without network isolation (ie, by directly
using the host networking driver for an optimal network performance77). Figure 8 details the physical architecture of our
experimental environment.

4.2 Medical imaging evaluation case studies

4.2.1 Brain tumor segmentation use case

The first use case we have chosen in order to evaluate the R2D2 Dist-Training module is the brain tumor seg-
mentation task which was proposed during the decathlon medical segmentation challenge 5. Actually, the brain tumor
segmentation involves isolating the different tumor tissues in the brain from healthy ones.78-80 It is a crucial and challeng-
ing task in medical image analysis because it plays an influential role in early diagnosis of brain tumors which in turn
enhance treatment planning and raise the survival rate of the patients.78,80 Yet, it is a tedious and time consuming task
because it might take hours even if it is manually performed by expert radiologists.78

3https://developer.nvidia.com/nccl
4More informations on TICK Stack platform can be found at the following link https://www.influxdata.com/time-series-platform/
5More informations on the decathlon segmentation challenge can be found at the following links: http://medicaldecathlon.com/ and https://
decathlon.grand-challenge.org/

https://developer.nvidia.com/nccl
https://www.influxdata.com/time%2010series%2010platform/
http://medicaldecathlon.com/
https://decathlon.grand%2010challenge.org/
https://decathlon.grand%2010challenge.org/


GUEDRIA et al. 11

F I G U R E 8 Distributed training
experimental environment architecture
[Color figure can be viewed at
wileyonlinelibrary.com]

Dataset
The dataset has been provided during decathlon medical segmentation challenge for the brain tumors segmentation task.
It is a mix of two other datasets that have been initially made publicly available during the Multimodal Brain Tumor
Segmentation Challenge: MICCAI BRATS81 2016 and 2017. It contains multimodal MRI scans (ie, 4D MRI scans78) of
complex and heterogeneously located brain tumors that were captured using multiple distinct MRI acquisition protocol78

from 19 different institutional data contributors.81 The BRATS datasets have been initially manually segmented by one
to four raters, using the same annotation protocol. After that, the multimodal brain tumor MRI scans along with all
their corresponding ground truth labels were manually reexamined and approved by experienced neurologists.81 Figure 9
shows an example of a brain MRI scan slice containing a tumor and its related annotated MRI scan slice. The final dataset
provided by decathlon and used to build our model contains in total 750 annotated MRI scans. It was split into two data
subsets. The first partition is a training and validation dataset with 484 annotated MRI scans. The second subset contains
266 annotated MRI scans dedicated to the testing phase.

Preprocessing pipeline
Since decathlon original dataset involves multimodal MRI scans (4D), it was preprocessed in order to extract the corre-
sponding 2D images alongside with their annotations for every MRI scan in the provided dataset. In order to do so, the
initial dataset was reduced to T1-weighted MRI scans (3D).82 After that, we extracted 70 2D-MRI slices per MRI scan.
Therefore, at the end of the preprocessing pipeline, the final training and validation dataset counts in total 33 880 2D-MRI
images alongside with their related annotations. This contributes to avoid overfitting without performing data augmen-
tation regularization technique on the training dataset. In addition, the same preprocessing pipeline was applied to the
testing dataset which counts at the end 18 620 annotated 2D-MRI images.

F I G U R E 9 BRATS MRI scan frame with its
corresponding ground truth annotation

2D-MRI slice of BRATS training dataset Corresponding brain tumor ground-truth
annotation

http://wileyonlinelibrary.com
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2D MRI Slice of the input training dataset

(The yellow structure is the target left atrial 

chamber)  

Corresponding left atrium 

ground-truth manual segmentation

F I G U R E 10 Left atrium segmentation training
dataset [Color figure can be viewed at
wileyonlinelibrary.com]

Operations Parameters

Rotation rotation_range 𝜀[−45, 45]

Zoom zoom_range 𝜀[0.8, 1.2]

(x + shift_range, y= 0), shift_range 𝜀[0, 25.6]

Translation (x= 0, y+shift_range), shift_range 𝜀[0, 25.6]

T A B L E 1 Data augmentation operations parameters of the left
atrium dataset

4.2.2 Left atrium segmentation use case

The left atrial segmentation task is the second medical imaging segmentation task we consider to asses the Dist-
Training module effectiveness. This segmentation task was provided by the King’s College London University during
the left atrial segmentation challenge (LASC).83 As shown in Figure 10, the left atrium segmentation consists in isolating
the left atrium body from its surrounding organs structures.83 It plays a key role during the treatment protocol of patients
with atrial fibrillation disease83 which is the most frequent cardiac electrical disorder provoked by abnormal electrical
discharges in the left atrium.84 Besides that, the latter left atrium segmentation task is also essential for cardiac biophys-
ical modeling procedure. Nonetheless, the thinness of the atrial wall tissue makes the left atrium segmentation process a
challenging task.83

Dataset
The dataset has been made publicly available by Philips Technologie GmbH, Hamburg, DE, and King’s College London
during the 2013 LASC challenge 6. Unlike the BRATS datasets, the left atrium segmentation dataset is a small one with
wide quality levels variability as it only includes 30 mono-modal 3D cardiac MRI scans. This will allow us to further
assess the transferability of the Dist-Training module. The dataset was split such that 20 MRI scans were provided
with their corresponding ground truth annotations for the training and the validation steps. The remaining 10 MRI scans
were supplied as a test set. The ground-truth masks were initially annotated using automatic model-based segmentation.
Afterward, a manual corrections were performed by human experts.83

Preprocessing pipeline
The preprocessing workflow of the provided datasets involves the following steps: (i) 70 2D-MRI slices were initially
extracted from each 3D cardiac mri scan through the ImgMed-implemented reshaping operation; (ii) A downsampling
operation to a size of 512× 512 pixels has been carried on each image in order to fit the memory constraint of the GPU
(NVIDIA GeForce GTX 1080 Ti); (iii) In order to break the curse of small datasets and avoid overfitting, data augmentation
technique has been performed on the LASC dataset with rotation, zooming and translation operations as detailed in
Table 1. Hence, at the end of the preprocessing pipeline, the final training and validation dataset counts in total 35 000
2D-MRI images alongside with their related annotations.

6The left atrium segmentation dataset is available at the following link https://www.cardiacatlas.org/challenges/left-atrium-segmentation-challenge/

http://wileyonlinelibrary.com
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4.3 Dist-Training module training time evolution with scalability

In this subsection, we evaluation the Dist-Training module training time evolution while increasing the number
of GPUs.

Figures 11 and 12 illustrate the decrease in the training time while scaling up the training of Dist-U-Net
and Dist-FCN, respectively. Multiple runs have been conducted for each configuration to assess Dist-U-Net and
Dist-FCN evaluation results variability. We run each experimental training configuration between three and five times
and we consider the average of the measured execution duration as our reference inference results. The Dist-U-Net
reaches 17.5× speedup and 97% scaling efficiency going from 21 hours and 40 minutes for single-GPU based U-Net, to 1
hour and 14 minutes for Dist-U-Net trained on 18 Nvidia GTX 1080 Ti GPUs. In the other side, the Dist-FCNachieves
10.4× speedup and 58% scaling efficiency reducing the training time from 35 hours and 40 minutes for a single-GPU
based Dist-FCN to 3 hours and 25 minutes for Dist-FCN trained on 18 Nvidia GTX 1080 Ti GPUs.

The Dist-U-Net and Dist-FCN have been evaluated concurrently on the two previously introduced medical imag-
ing segmentation use cases. Figures 11 and 12 both show that the BRATS training time evolution curve closely match the
left atrium one which establishes the transferability of our proposal. In addition, we notice that the baseline U-Net CNN
converges faster than the FCN one in both segmentation case studies in only 21 hours and 40 minutes. This observation
matches and confirms the findings of Li et al17 which highlights that residual connections (similar to the ones that exist
in U-Net architecture) produce a smoother loss function which leads to an easier and faster convergence.

The disparity of the scaling efficiency and speedup of Dist-FCN and Dist-U-Net is mainly due to the nature of
the experimental setup and the difference in their corresponding implementation strategies. In particular, during the
training process of Dist-U-Net, the entire training and validation sets are loaded into the random access memory of
each training agent. On the other hand, the Dist-FCN implementation takes advantage of the GPU’s dedicated memory
to iterate through the training and validations datasets in order to load each minibatch through a NFS which represents
a communication overhead. Furthermore, the Dist-U-Net implementation contains highly optimized operations to
accelerate the distributed validation step.

We assess the testing time of Dist-FCN and Dist-U-Net. Indeed, in order to eliminate the system routine opera-
tions influence in time measures, we run each experimental setup 10 times and we consider the average of the measured

F I G U R E 11 Training time evolution with scale for
Dist-U-Net [Color figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 12 Training time evolution with scale for
Dist-FCN [Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 13
Segmentation metrics evolution
with scale for Dist-FCN for brain
tumor segmentation [Color
figure can be viewed at
wileyonlinelibrary.com]

execution duration as our reference inference results. The testing workstation is equipped with an NVIDIA GTX 1080 TI
GPU. The obtained testing times per image are 153 and 182 ms for Dist-U-Net and Dist-FCN, respectively.

4.4 Dist-Training segmentation accuracy evolution with scalability

Throughout this subsection, we evaluate the impact of increasing the GPUs number on the segmentation accuracy. Even
though it is common to use a unique segmentation evaluation metric, we consider the entire evaluation metrics provided
by the previously introduced SegEval module in order to comprehensively assess our proposal.

4.4.1 Dist-FCN for brain tumor segmentation

The adopted Dist-FCN architecture for the brain tumor segmentation consists of a total of 16 FCN layers. It takes the
input volume throughout a sequence of an increasing number (ie, n=2 for the first two blocks and n=4 for the rest of
blocks) of convolutional layers which are immediately followed by ReLU activation function. At the end, a max-pooling
layer is applied. The sequence n x (convolution + ReLU) is repeated again 4 times before performing upsampling through
a transposed convolution upsampling layer32 and applying a softmax layer13,26 for the pixel-wise classification task. More-
over, dropout regularization technique13 was applied during the training phase to avoid overfitting. Finally, the network
parameters were initialized through Transfer Learning using a pretrained VGG-16 model on the ImageNet dataset 7.

Training settings
The training was performed using the minibatch stochastic gradient descent (SGD) optimization algorithm with a mini-
batch size of 10 (to fit the GPU memory limit). The training process was done for a total of 120 epochs and a learning rate
of 1e− 5. All training hyperparameters were kept unchanged except of the learning rate which was adjusted according to
the learning rate linear scaling rule. In the first place, no learning rate warmup strategy was applied, before performing a
gradual warmup schema afterward. The gradual warmup schema consists in applying progressively a low learning rate
for the first few epochs in order to overcome convergence issues at the start of the training.15

Evaluation
As shown in Figure 13, the Dist-FCN for brain tumor segmentation trained on 18 GPUs without learning rate warmup
strategy reach 74.22% dice score accuracy, 84.29% Mean IoU and 86.28% MA which are 4.08% , 2.7%, and 3.35%, respectively,
lower than the single-GPU baselinemodel. At the same time, the gradual warmup strategy enhance the segmentation
accuracy loss by 3.76%, 2.8%, and 3.01% for the dice score, Mean IoU and the MA metrics correspondingly. Our practical
experiments results show an interesting unexpected segmentation accuracy loss increasing with the parallelism degree.

7More informations and the download link for the pretrained VGG-16 model on the ImageNet dataset can be found at the following link: http://www.
vlfeat.org/matconvnet/pretrained/

http://wileyonlinelibrary.com
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F I G U R E 14
Segmentation metrics evolution
with scale for Dist-U-Net for
brain tumor segmentation
[Color figure can be viewed at
wileyonlinelibrary.com]

4.4.2 Dist-U-Net for brain tumor segmentation

Training settings
For training, we use the minibatch SGD optimization algorithm. The training phase was done with a minibatch size of 7,
during 100 epochs and while using an initial base learning rate of 1e− 5.

Evaluation
Figure 14 introduces the brain tumor segmentation accuracy evolution when scaling up the Dist-U-Net (1) with no
warmup phase and (2) while performing a gradual warmup for the first 5 epochs. As can be seen, the dice score decreased
by 0.44% going from 0.890 in 1-GPU implementation to 0.886 in 18 GPUs in the case of no warmup phase. Similarly,
the mean.IoU and MA metrics drop with 0.55% and 0.61%, respectively. On the other hand, the gradual warmup strategy
achieves the same dice score accuracy loss as the no warmup strategy. Nonetheless, the gradual warmup strategy seems not
to be effective at low scalability level as is does not help the network to converge faster. Finally, no accuracy degradation is
reported in the PA and f.w.IoU metrics regardless of the adopted warmup schema. To sum up, our experiments highlights
an unexpected segmentation accuracy degradation with scale, nevertheless its small value.

4.4.3 Dist-FCN for left atrium segmentation

We adopted a 16 layers Dist-FCN CNN architecture similar to aforementioned one in subsubsection 4.4.1. Similarly, we
also leveraged transfer learning approach using pretrained VGG-16 model on the ImageNet dataset.

Training settings
The training was performed using the mini SGD optimization approach, a minibatch size of 10, for a total of 120 epochs.
We also applied the learning rate linear scaling rule starting with an initial learning rate of 3e− 5.

Evaluation
Figure 15 illustrates the segmentation accuracy metrics evolution when scaling up the Dist-FCN for left atrium segmen-
tation before and after performing Gradual warmup strategy. It illustrates a dice score accuracy and MA fall of 3.38% and
1.3% accordingly for a gradual warmup initialization learning rate approach. Yet, with no warmup strategy, theDist-FCN
achieves better results with 1.21%, 0.86%, and 1.46% segmentation accuracy decrease for the dice score, MA, and mean.IoU,
respectively. However, no accuracy loss is reported for the f.w.IoU and the PA metrics. Finally, once again, even if the lin-
ear scaling rule is supposed to eliminate the accuracy loss, our experiments show a quite surprising accuracy degradation
when scaling up the considered GPUs number.

4.4.4 Dist-U-Net for left atrium segmentation

Training settings
For training, we use the minibatch SGD optimization algorithm. The training phase was done with a minibatch size of 7,
during 100 epochs and while using a learning rate of 2e− 5.

http://wileyonlinelibrary.com
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F I G U R E 15
Segmentation metrics evolution
with scale for Dist-FCN for left
atrium segmentation [Color
figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 16
Segmentation metrics evolution
with scale for Dist-U-Net for left
atrium segmentation [Color
figure can be viewed at
wileyonlinelibrary.com]

Evaluation
As can be seen in Figure 16, scaling up the training of Dist-U-Net for left atrium segmentation to 18 GPUs without
gradual learning rate warmup strategy achieves 79.48% dice score accuracy and 96.41% MA which are 2.26% and 1.53%,
respectively, lower than the single-GPU Dist-U-Net baseline trained model. However, the gradual warmup approach
improves the accuracy degradation to only 1.34% and 0.31% for the dice score and MA metric correspondingly. Yet again,
our experimental results reveal a quite unexpected segmentation accuracy loss when scaling up the CNNs training pro-
cess. In addition, these results show that the PA and f.w.IoU metrics are not very relevant for our experiments assessment
process. Indeed, they suffer from a unbalanced variability range due to the disproportional size of every class in our
segmentation case studies (eg, the disproportional size between the small left atrium body and large background class
size)

4.5 Discussion

We evaluated our proposed Dist-FCN and Dist-U-Net training time and segmentation accuracy metrics evolution
with scale on a couple of challenging medical imaging segmentation case studies (i) BRATS: a dataset with small targets
(tumors) in large MRI images (ii) Left Atrium: a small training set with large variability. The case studies evaluation
results led us to not only assess the segmentation accuracy evolution when scaling up the Dist-FCN and Dist-U-Net
architectures, but also to compare FCN and U-Net performances in a couple of different segmentation tasks. Actually,
the evaluation results showed that the U-Net CNN architecture achieves a far better performances than the FCN one
in the brain tumor segmentation task with 90.23% dice score. In addition, the U-Net and FCN CNNs produce a close
results in term of performances for the left atrium segmentation with an advantage of 1.8% in the dice score for the U-Net
architecture. These findings confirm the need to perform multiple CNNs training runs in order to investigate the best
suited CNN architecture for a particular task alongside with its corresponding optimal hyperparameters set. Hence, the

http://wileyonlinelibrary.com
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interest of R2D2 in accelerating the prototyping and the development of cutting-edge CNNs which in turn is a capital
software engineering principal.

The aforementioned empirical evaluation results led us also to perform a deeper experimental analysis of the gener-
alization of last published works15-19 to the segmentation task. Actually, the segmentation task is a more complex task
comparing to the classification task which was mainly used in the state-of-the-art works to asses the linear scaling rule
and its corresponding warmup schemas.15 The experimental results showed that there was no segmentation accuracy
loss until 12 GPUs. Starting from that scalability level, the learning rate scaling rule breaks down and a negligible accu-
racy loss comparing to the remarkable scaling efficiency starts to appears. These results are in line with the 1% increase
of error rate reported by Krizhevsky85 when increasing the minibatch size from 128 to 1024. In addition, You et al18 out-
line also an accuracy deterioration of 5.7% by using the linear scaling rule and the warmup schema. Furthermore, Hoffer
et al19 show that there is still an accuracy degradation for CIFAR10 8classification task even while using the linear scal-
ing rule. Hence, our experiments confirm the results of these works18,19,85 and call into question the extent of the linear
scaling rule to the segmentation task.

5 CONCLUSION AND FUTURE WORK

In this article, we proposed and evaluated an easy-to-use scalable DLTK for medical imaging segmentation named R2D2.
The main goal of R2D2 is to speed-up the research in the deep-leaning-based medical imaging applications with a par-
ticular focus on semantic segmentation task. We exposed R2D2 concepts and design and detailed its inner buildings
components, while justifying our design and implementation choices. We then evaluated our scalable toolkit on two
distinct concrete medical imaging segmentation case studies to show the effectiveness of our proposal.

As future work, we aim to broaden the spectrum of supported CNNs in R2D2 by not only implementing other scalable
CNN-based segmentation architectures, but also through supporting a wider range of medical imaging tasks (eg, registra-
tion, classification). Another promising area of research is to analyze the collected data during the distributed training,
with the purpose of getting valuable insights and revealing correlations and hidden patterns within collected datasets.
We plan also to shift our distributed training platform from Grid’5000 testbed toward private cloud solutions in order to
further evaluate our proposed solution scalability on a production ready environment.
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